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Self-similarity in random collision processes
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Kinetics of collision processes with linear mixing rules are investigated analytically. The velocity distribu-
tion becomes self-similar in the long-time limit and the similarity functions have algebraic or stretched expo-
nential tails. The characteristic exponents are roots of transcendental equations and vary continuously with the
mixing parameters. In the presence of conservation laws, the velocity distributions become universal.

DOI: 10.1103/PhysRevE.68.050103 PACS number~s!: 05.40.2a, 02.50.Ey, 05.20.Dd
en

lie
-

co

ta

in
m
a
l-

ly
r
o

e
g
ha

di

d

an

in

lli-

g-

ent.

i-

m

a

t,
i-

or

s

Collision processes underlie fundamental phenom
such as heat transport in gases@1# and mixing in fluid flows
@2#. Conservation of mass, momentum, and energy imp
Maxwellian velocity statistics@3#. However, there are physi
cal systems such as granular media@4# and atomic collisions
@5# where energy or even momentum@6# is not conserved.
The reason may be that only a subset of the system is
sidered, that not all degrees of freedom are measured@two-
dimensional~2D! imaging of 3D systems#, or that acoustic or
other excitations are ignored. Non-Maxwellian velocity s
tistics are found in granular gases@7#, colloids @8#, and laser
cooling @9#.

Random collision processes are a framework for study
the role of conservation laws, and demonstrate how ano
lous velocity statistics emerge when conservation laws
relaxed@10–13#. Motivated by this, we consider binary co
lision processes witharbitrary linear collision rules. While
in the long-time limit velocity distributions are generical
self-similar, there is a wide spectrum of possible behavio
The velocity distributions are characterized by algebraic
stretched exponential tails and the corresponding expon
depend sensitively on the collision parameters. Interestin
when there is energy or momentum conservation, the be
ior is universal.

Consider the most general linear collision law in one
mension: when a particle of velocityu1 collides with a par-
ticle of velocity u2, the postcollision velocities are

v1,25pu1,21qu2,1, ~1!

with p and q the mixing parameters. Special cases inclu
elastic collisions (p50, q51), inelastic collisions (p1q
51), the granules model (p1q,1) @6#, the Kac Model
(p21q251) @14#, inelastic Lorenz gas (p50, q,1) @15#,
and addition (p5q51) @16#.

Further, we consider perfectly random dynamics: two r
domly chosen particles collide according to Eq.~1!. The nor-
malized velocity distributionP(v,t) obeys

]

]t
P~v,t !5E E du1du2P~u1 ,t !P~u2 ,t !

3@d~v2pu12qu2!2d~v2u1!#. ~2!
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This Boltzmann equation is termed the Maxwell model
kinetic theory~the constant collision rate is set to unity! @17#.
The quadratic integrand in Eq.~2! reflects the binary nature
of the collision process and the gain term reflects the co
sion rule ~1!. The number density is conserved by Eq.~2!,
*dvP(v,t)51.

The convolution structure of the evolution equation su
gests the Fourier transformF(k,t)5*dveikvP(v,t). This
quantity obeys the nonlinear and nonlocal equation

]

]t
F~k,t !1F~k,t !5F~pk,t !F~qk,t !. ~3!

This closed equation is amenable to analytical treatm
Moments of the velocity distribution, Mn(t)
5*dvvnP(v,t), obey a closed hierarchy of equations@18#

d

dt
Mn1lnMn5 (

m51

n21 S n
mD pmqn2mMmMn2m ~4!

with the shorthand notationln512pn2qn. These equa-
tions are solved recursively withM0(t)51.

We are interested in the long-time limit and we seek sim
larity solutions of the form

P~v,t !→eatF~veat!, ast→`. ~5!

Equivalently, the Fourier transform has the similarity for
F(k,t)→ f (ke2at). This function satisfies

2az f8~z!1 f ~z!5 f ~pz! f ~qz!. ~6!

The similarity function may include both a regular and
singular ~nonanalytic! component f (z)5 f reg(z)1 f sing(z)
with f reg(z)5(n@( iz)n/n! # f n . Normalization setsf 051.
The leading small-z behavior of the singular componen
f sing(z);zn, reflects an algebraic tail of the velocity distr
bution

F~w!;w2n21, ~7!

as w→`. Substituting the leading singular behavi
f (z)21;zn into the governing equation~6! yields a relation
between the scaling parametera and the mixing parameter
p andq,
©2003 The American Physical Society03-1
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a5n21ln . ~8!

There are two types of scaling solutions, depending on
average initial velocityM1(0): type-I scaling@M1(0)Þ0#
and type-II scaling@M1(0)50#. Note that the system is no
Galilean invariant because momentum is not necessari
conserved quantity.

Type-I scaling.The first moment varies exponential
with time, M15e2l1t, according to the rate equatio
(d/dt)M11l1M150 ~its initial value can be set to unity!.
The small wave-number behavior of the regular compon
of the Fourier transform is thereforeF(k,t)>11 ike2l1t.
When n.1, this component dominates over the singu
component. Therefore,f (z)>11 iz and the scaling param
eter is a5l1. When n,1, the singular component dom
nates over the regular one, so the parametera is not obvious.
There is a spectrum of possiblea ’s depending onn accord-
ing to the ‘‘dispersion’’ curve~8!. This curve has a maximum
a5(d/dn)ln at n given byn(d/dn)ln5ln . We argue that
this maximum is actually realized by the dynamics. In
itively, the selection of the extremum point maximizes t
typical wave number}eat. The scaling parameter is there
fore

a5H pn ln
1

p
1qn ln

1

q
, n<1

12p2q, n>1.

~9!

The exponentn characterizing the algebraic tails is the ro
of the transcendental equation~8! with a given by Eq.~9!.
Explicitly, the equations arepn ln(e/pn)1qn ln(e/qn)51 and
12pn2qn5n(12p2q) for n<1 and n>1, respectively
~Fig. 1!.

Algebraic tails exist as long as the exponentn is finite.
The exponent diverges,n→`, in the limiting casesp1q
51, p51, andq51, defining the triangular regionS ~Fig.
1!. In this domain, the singular component disappears
the scaling functionf (z) is analytic. Moreover, the velocity
distributionF(w) has sharp tails and all of its moments a
finite. Outside the regionS, the exponentn is always finite. It

FIG. 1. The phase diagram for type-I scaling. Shown are equn
contours as a function of the mixing parameters.
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varies continuously as a function of the mixing paramet
and it vanishes,n→0, whenp→0 or q→0.

The curve p ln(e/p)1q ln(e/q)51, marking the casen
51, separates two kinds of behavior. Whenn.1 the first
moment characterizes the velocity distribution. In t
complementary case, the typical velocity does not follo
from the~integer! moment behavior. This dichotomy is rem
niscent of similarity solutions of the first and second ki
@19#. Interestingly, extremum selection determines the typi
velocity and thereby the velocity distribution whenn,1.
Extremum selection similarly governs the speed and
shape of nonlinear waves in reaction-diffusion proble
@20,21#. Indeed, in terms of the variable lnv, the similarity
solution ~5! is nothing but a travelling waveP̃(ln v,t)

→F̃(ln v1at).
Type-II scaling.When the average initial velocity van

ishes, the initial variance can be set to unity. From the m
ment equations~4!, the variance varies exponentially wit
time, M2(t)5e2l2t. The small-wave-number behavio
F(k,t)>12 1

2 k2e2l2t dominates whenn.2 and conse-
quently, the second moment characterizes the velocity di
bution,a5 1

2 l2. Otherwise, the singular component gover
the behavior as above and the scaling parameter is

a5H pn ln
1

p
1qn ln

1

q
, n<2

1

2
~12p22q2!, n>2.

~10!

The exponentn characterizing the algebraic tails is the ro
of the transcendental equationpn ln(e/pn)1qn ln(e/qn)51 for
n<2 and 12pn2qn5(n/2)(12p22q2) for n>2 ~Fig. 2!.
It diverges in the vicinity of the curvesp51, q51, and
p21q251. Inside this regionS, the similarity solution
f (z) is regular and the velocity distributionF(w) has sharp
tails. Generally, similarity solutions are symmetric,
f (z)5 f (2z).

The diverging exponentn indicates that the large velocit
tail is a stretched exponential, rather than algebraic, in
region S. Indeed, the Fourier transformf (z);exp(2zm) for
largez is compatible with the governing equation~6! when

FIG. 2. The phase diagram for type-II scaling.
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lm50. ~11!

Steepest descent yields a stretched exponential behavio

F~w!;exp~2wg!, ~12!

with g5@m/(m21)# for w→`. As was the case for the
exponentn, m is a root of a transcendental equation a
consequently, the exponentg>1 varies continuously with
the mixing parameters. Its minimal valueg51 is attained
along the region boundariesp51 and q51. The tail is
Gaussian,g52, along the type-II boundaryl250 and the
exponent diverges,g→`, along the type-I boundaryl1
50.

Self-similarity holds whether the typical velocity shrink
or grows with time, i.e., regardless whethera is positive or
negative. For type-I scaling the velocities shrink~grow! with
time whenl1.0 (l1,0) and similarly for type-II scaling.

Asymptotically, sufficiently small moments of the velo
ity distribution are governed by the typical velocity. Othe
wise, the moment behavior follows from the hierarchy
evolution equations~4!,

Mn;H exp~2nat !, n,n

exp~2lnt !, n.n .
~13!

Sufficiently small moments of the velocity distribution e
hibit ordinary scaling behavior while sufficiently large m
ments exhibit multiscaling asymptotic behavior@22#. By
multiscaling, we refer to moment ratios such asMn /M2

n/2

that diverge asymptotically.
Extensive numerical simulations confirm the theoreti

findings. In the simulations, randomly chosen pairs of p
ticles undergo the collision process~1!. The number of par-
ticles was 107 and the velocity distributions were obtaine
from an average over ten independent realizations. Repre
tative simulation results corresponding to flat initial distrib
tions with support in@0:1# and@21:1# are shown in Figs. 3
and 4, respectively.

There are a number of special cases worth highlightin
Addition (p5q51). This integrable case nicely demo

strates how similarity solutions emerge. The transformat

FIG. 3. Self-similarity in type-I scaling. Shown isF(w) versus
w for the casep5q50.4 (a50.2). In the inset, the tail is compare
with the theoretical predictionn54.886 36.
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G(k,t)51/F(k,t) reduces the~local! Ricatti equation~3!
into @]/]t#G(k,t)1G(k,t)51. The Fourier transform read
F(k,t)5$11@F0

21(k)21#et%21 with F0(k)[F(k,t50).
Indeed, the small-wave-number behavior of the initial dis
bution F0(k) dictates the asymptotic behavior. Whe
M1(0)51, type-I scaling occurs, with the similarity solutio
f (z)5@12 iz#21 and F(w)5e2w for w.0. WhenM1(0)
50, type-II scaling occurs, with the similarity solutio
f (z)5@11 1

2 z2#21 and F(w)5(1/A2)exp(2A2uwu). One
can verify that these similarity solutions satisfy Eq.~6! with
a51 and 1/2 for type I and type II, respectively.

Kac Model (p21q251). For type-II scaling, energy is
conserved, but onlyon average, sincel250. In this case,
the velocity distribution approaches a steady sta
a50. Equation~3! has the solutionf (z)5exp(2z2/2) and
the velocity distribution is Maxwellian, F(w)
5(2p)21/2 exp(2w2/2). For type-I scaling, energy is no
conserved and the velocity distribution is no longer univ
sal. However, it still exhibits a Gaussian tail.

Inelastic Maxwell model(p1q51). For inelastic colli-
sions, the total momentum is conserved,l150. Using the
Galilean transformationv→v2M1(0), the initial momen-
tum can be set to zero and so the behavior is always of t
II. The exponentn53 is the root of the equationln

5(n/2)l2. In this particular case, an explicit solution can
found f (z)5(11uzu)e2uzu or F(w)5(2/p)(11w2)22 @10#.
Interestingly, when there is a conservation law~either mo-
mentum or energy!, the similarity solution is independent o
the mixing parameters.

Lorentz gas(p50). This case corresponds to inelas
collisions with massive scatterers. The evolution equation
linear, (]/]t)P(v,t)1P(v,t)5q21P(vq21,t). It is useful
to consider the stochastic process the velocity undergoev
→vq→vq2→•••. The number of collisions is distribute
according to a Poisson distribution with mean equal to timt.
Therefore, the velocity distribution@23# is

P~v,t !5e2t (
n50

`
tn

n!

1

qn
P0S v

qnD . ~14!

FIG. 4. Self-similarity in type-II scaling. Shown isF(w) versus
w for the casep5q50.6 (a50.14). The inset compares the ta
with the theoretical predictionn56.669 37.
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In other words, the variable lnv is Poisson distributed with
mean equal tot ln q, so a finite number of standard devi
tions away from the mean lnv is Gaussian distributed. Thus
the tail of the distribution is log-normal, P(v)
;exp@2(ln v)2/(2t ln q)#. In the limit n→0, no similarity so-
lutions emerge and all moments of the velocity distributi
exhibit multiscaling,Mn(t)5Mn(0)exp(2lnt). We conclude
that the linear collision process~1! is an effective mixing
mechanism. No matter how small either of the mixing p
rameters is, eventually, the binary collision process alters
nature of the velocity distribution. In other words, nonlinea
ity provides the mechanism for the self-similar behavior.

The usual physical particle collision region is associa
with 0<p1q<1 @6# and restitution coefficien
0<q2p<1. Other applications may involve values ofp and
q outside this region. We implicitly assumed that the mixi
parameters are positive (p,q>0) but the behavior easily ex
tends to the other three quadrants in thep-q plane. Consider
the first two momentsM1(t)5M1(0)exp(2l1t) and M2(t)
5@M2(0)2cM1

2(0)#e2l2t1cM1
2(0)e22l1t with c

5(2pq)/(l222l1). The first moment governs the secon
moment (M2;M1

2) when l2.2l1, i.e., in the circular do-
main (p21)21(q21)2,1, which is entirely contained in
the first quadrant. Thus, type-I scaling occurs only in the fi
C.

A.

d
,

s.
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quadrant. Type-II scaling occurs in the other three quadra
regardless ofM1(0).

We tacitly assumed that all moments are finite initial
Consider initial distributions with a leading small-k behavior
of the type 12F0(k);kn0, competing withf sing(z);zn. The
initial conditions govern the asymptotic behavior wh
n0,n and thus,a5n0

21ln0
. This generalization of the pre

vious results applies for both type-I scaling (n051) and
type-II scaling (n052).

In closing, random and linear mixing results in se
similar velocity distributions. Nonlinearity is responsible fo
this scaling and extremum selection may govern the beh
ior. The velocity distributions have either algebraic or exp
nential tails, with nontrivial characteristic exponents. Eve
possible algebraic tail and every faster than exponential
cay constitutes the spectrum of behaviors. Conservation l
play a crucial role, as the velocity distribution becomes u
versal when physical quantities~either energy or momentum!
are conserved.
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